INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:171-187 (DOI: 10.1002/1d.362)

Aerospace simulations on parallel computers using
unstructured grids

N. P. Weatherill*, O. Hassan, K. Morgan, J. W. Jones,
B. G. Larwood and K. Sorenson

Department of Civil Engineering, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, U.K.

SUMMARY

If complex simulations on realistic configurations are to be performed, it is critical that the large volume
of data that will be produced can be handled efficiently. In our work, we have chosen to parallelize all
the steps in the computational cycle; unstructured mesh generation, solvers, adaptation and visualization.
In this way, data is distributed at the early stage of mesh generation and is never brought together,
thereby preventing data bottlenecks. Using these parallel modules, large-scale simulations have been
performed for both computational fluid dynamics and computational electromagnetics. The paper briefly
describes the approaches taken to parallelizing the unstructured grid techniques and examples are given
using meshes to a quarter of a billion elements. Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: computational fluid dynamics; computational electromagnetics; unstructured grids;
parallel processing

1. INTRODUCTION

The advent of the vector supercomputers of the 1970s, of which the CRAY 1S is perhaps
the most famous, had a major influence on scientific simulation. The technology acted as a
catalyst for new algorithms that were able to address emerging and challenging applications.
In the last few years, the next generation of computers has emerged in the form of massively
parallel computer hardware. Again there is an opportunity for the simulation community to
utilize this new computer power to open new avenues for research and to attempt real-world
simulations that in the past were out of the range of all but a handful of extremely expensive
computers.

In the areas of computational aerodynamics and electromagnetics (primarily focused on
radar cross section), it is clear from our estimates (see Figures 1 and 2) that very large
computational grids are required for future simulations. However, with the continuous growth

* Correspondence to: N. Weatherill, Department of Civil Engineering, University of Wales Swansea, Singleton Park,
Swansea SAZ 8pp, U.K.

Contract/grant sponsor: European Union; contract/grant number: 25050
Contract/grant sponsor EPSRC (Esprit 25050)

Received May 2001
Copyright © 2002 John Wiley & Sons, Ltd. Revised April 2002

172 N. P. WEATHERILL ET AL.

4 LES

Turbulent
8 [.
Laminar
70 @
Euler

@

Log(NoN)
O

v

Complexity of the physics

Figure 1. Mesh requirements for computational fluid dynamics for a complete
aircraft (NoN—number of nodes).

11— Q@

10 — ®

Log(NoN)

025 05 1.0 2.0 40 8.0
Frequency (GHz)

v

Figure 2. Mesh requirements for the simulation of electromagnetic scatter from
an aircraft 20 m in length (NoN—number of nodes).

in speed of modern parallel computer platforms and suitable software, it will be feasible to
perform the next generation of simulations (see Figure 3).

Some years ago, therefore, we embarked on a long-term research programme to enhance
our software capability in CFD and CEM so as to provide the necessary basis for the next
generation of simulations. It was deemed necessary to parallelize all the different steps in the
computational cycle, from geometry input, to unstructured mesh generation, to simulation, to
visualization and data mining and onto mesh adaptation. To aid in the usability of such soft-
ware, a parallel simulation user environment (PSUEII), within which all the parallel modules
were embedded, was also developed.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 173

1024

Turbule ady N.S
26— \\ \K \.

64
-\ CEM:ZSOMPZ Loy O ROOMIZ
16 Uhg{dym
ler uler
4

N N

0.075 0.25 1 4 16 64
CPU Time (Hours)

N. of Processors

Figure 3. Estimated time for simulations in the next 5 years.

2. BASIC TECHNOLOGY

Details of some of the developments and performance of these modules have been previously
reported [1-5]. However, an overview of the basic technology will be given.

2.1. Geometry modelling

A CAD model contains information on the topology and the shape of a geometry. The topol-
ogy is constructed from nodes, edges, faces and volumes, whilst the geometry is defined in
terms of vertices, curves and surfaces. The topology can be extracted from a CAD model.
From the geometry data, it is possible to construct a mathematical model of curves and sur-
faces. A parametric representation is used so that grid generation on a curve and a surface
then reduces to grid generation in one and two dimensions, respectively. Typical complex
aerospace geometries may use many hundreds of individual surfaces, some of which may
be degenerate. The issue of ensuring the geometry is watertight with a consistent topology
is a large research topic in its own right. It is, therefore, considered to be outside of the
domain of the computational simulation and is, therefore, not addressed within the current
implementation of the PSUEIL.

2.2. Unstructured grid generation

To handle complex shapes, unstructured grids of tetrahedra offer the maximum flexibility.
In our approach to unstructured grid generation, the required mesh point density within a
domain is defined in terms of a background grid and a set of point, line and planar sources
[6]. Unstructured surface grids are generated using an advancing front algorithm operating in
the space of the parametric co-ordinates of the surfaces [7]. A volume mesh is constructed
using a Delaunay algorithm with automatic point insertion [6].

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

174 N. P. WEATHERILL ET AL.

The approach adopted for parallel mesh generation is based upon geometrical partitioning
of the domain [2]. To generate a grid in parallel, the complete domain is divided into a set
of smaller sub-domains, and then a grid generated in every sub-domain independently. An
assembly of the sub-domain grids forms the final grid for the total domain. A manager/worker
model is employed, in which the initial work is performed by the manager who then distributes
the grid generation tasks to the workers. The workers generate the grids using the sequential
Delaunay algorithm [6]. The manager can recombine all the sub-domain grids or, if the grid
is particularly large, leave the partitioned grid on disk.

The procedure can be described in four stages:

Stage 1. Apply the geometrical partitioning scheme on the computational domain.

Stage 2: Generate meshes on the inter-domain boundaries.

Stage 3. Generate grids in each sub-domain using different processors.

Stage 4: Post-process the grid, including node smoothing of inter-domain boundaries, work
load redistribution, and build the inter-domain node-element communication table.

In this approach, following the generation of the surface grid, the domain is sub-divided using
planar cuts through the domain. From these cuts a bounding curve is obtained which is defined
by existing edges in the surface triangulation. Although these edges are not in general planar,
the points can be mapped to the plane of the cut surface. On the cut planar surface, a grid can
be generated and then the edge points transformed back to their original positions to provide
the final inter-domain grid. High-quality inter-domain grids can be obtained in this way.

The division of the domain, or a subsequent sub-domain, follows two stages. The first
step is to find a suitable cutting plane to split the domain into two. The longest axis of the
enclosing box of the domain is found and then two options are available:

(i) A simple approach, which does not account for the distribution of nodes within the
domain, is to place the cutting plane halfway along this axis.

(ii) An alternative approach, designed to account for the distribution of nodes within the
domain, is to select the boundary node with the minimum co-ordinate in the sense of
the longest axis. A search is begun, moving through the surface triangulation, marking
triangles and advancing along the longest axis and maintaining a front which is normal
to the axis. Given that the number of surface triangles within a domain is known, the
search continues until half the triangles have been identified. A plane is then defined with
a position along the major axis computed as the average of the axis co-ordinate of all
the nodes in the advancing triangles.

The proximity of the proposed cutting plane with any ‘natural’ boundaries, such as the leading
and trailing edges of a wing is then checked. This is performed using the following algorithm.
If necessary, the position of the cutting plane is modified to ensure that the distance between
the plane and any boundary is not less than the minimum background grid spacing at that
location. This procedure effectively defines regions where a cutting plane cannot be placed.
Figure 4 shows these invalid regions with shaded areas for the Thrust Supersonic car geometry.

Step 1: Determine the normal vector for all triangles in the current domain.
Step 2: Inspect all normal vectors and ‘flag’ each triangle where the angle between the
normal vector of the triangle and the normal to the cutting plane is less than 5°.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 175

L’ X | Invalid Region

Figure 4. Invalid planar cut regions for thrust SSC geometry.

(a) (b)

Figure 5. (a) Initial coarse rim, (b) smoothed rim.

Step 3: Build invalid regions around the flagged triangles.
Step 4: Ensure the cutting plane does not lie within an invalid sector. If necessary the
cutting plane is moved.

Once a valid position for the cutting plane has been established it is then necessary to derive
a closed ‘rim’ of edges from the surface triangulation of the domain that will form the
boundaries for the two-dimensional Delaunay triangulation procedure. Initially, a coarse rim
is found by extracting all edges that intersect the cutting plane, as shown in Figure 5(a). A
closed loop of edges is then formed by deleting all edges which contain a node that occurs
only once in the loop and then by performing a directed graph analysis, Figure 5(b). The
directed graph analysis is performed by finding the start and end nodes and assigning a weight
to each node along all possible paths. The shortest single route from start to end nodes is
found by starting from the end node and moving to the adjacent node which has the lowest
weight measure.

Once the closed loop has been defined, further pre-processing is performed prior to the
generation of the grid on the cutting plane. Three steps are required. The first two are designed

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

176

N. P. WEATHERILL ET AL.

o

Figure 6. (a) Rough initial edge, (b) edge smoothed.

\ \
|

Figure 7. (a) Initial edge path, (b) smooth edge path.

to provide a smooth closed loop, whilst the final step involves the projection of the nodes of
the closed loop onto the cutting plane:

(1)

(ii)

(iii)

Consider the path of the loop as shown in Figure 6(a). It is clear that a path more
aligned with a given direction can be derived when the closed loop contains two edges
which form two of the three edges of a given surface triangle. The two edges in the
loop are replaced by the third edge in the triangle, Figure 6(b). This procedure forms
the first pre-processing step.

Consider two consecutive edges in the closed loop. These form two edges in two triangles
that share a common edge, Figure 7(a). Clearly, therefore, there are two paths that
connect the two vertices of the two triangles that share the common edge. The angle
between the two edges that form part of the closed loop is computed and compared with
the angle formed by the edges that form the alternative path. The path that subtends the
largest angle is chosen, Figure 7(b).

Before the inter-domain grid can be generated the final step involves the projection of
the nodes on the closed loop onto the cutting plane. Given a cutting plane of constant
X, say Xo, a node with co-ordinates (x, y,z) will be mapped to the position (y,z) on the
plane x =xy. Given that the ordering of the boundary nodes is known, any boundary edges

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 177

crossover, which could result from this simple mapping, can be immediately detected and
the co-ordinates of the node modified to untangle the edges. The inter-domain boundary
mesh is then generated using a two-dimensional Delaunay triangulation algorithm. The
boundary nodes are then mapped back to their original positions on the closed loop. It
has been found that this can result in the intersection of triangular faces of the inter-
domain grid and the original domain surface grid. This arises when two nodes cannot
see each other and hence an intersection arises. However, this problem can be easily
solved by recursively adding nodes along the edge of the triangle of the inter-domain
surface mesh that intersect with the domain surface mesh.

2.2.1. Inter-processor communication. The structure of the parallel grid generator is a single
programme multiple data model. Sub-domain boundary data is passed from the manager to
worker processors using message passing interface (MPI) [8]. To avoid latency problems oc-
curring within the network, data, such as the boundary triangles and point co-ordinate arrays,
are sent packed into a buffer, rather than being sent with individual calls to the send routine
provided by the MPI library. This operation of packing data into a buffer creates a contiguous
message from irregularly spaced data structures. The packing of data has another advan-
tage that allows the programme to be run across a heterogeneous network of workstations.
Switching between MPI and parallel virtual machine (PVM) [9] is relatively straightforward.
The geometrical partitioning approach requires a minimal amount of communication between
master and slave, and zero communication between slaves.

2.2.2. Dynamic load balancing. If N sub-domains are created as a result of the domain
decomposition procedure, and N processors are available, then there can be one task per
processor. Since the workload for each sub-domain may be different or, alternatively, a network
of heterogeneous workstations is used as the computing environment, then this can produce
an inefficient parallel performance. Effectively, the worker with the largest workload, or the
slowest worker delays the process. Since, in the proposed strategy, there is no communication
between processors, it is practical to sub-divide the domain into M partitions and if M >N
it is possible to distribute more than one task to a processor. This procedure will be termed
dynamic load balancing [2].

For a computer platform with N processors, it is recommended to generate i times N tasks,
where i is an integer. This avoids any imbalance due to tasks that require significantly more
computational effort than others.

An additional form of dynamic load balancing can also be implemented in which a processor
sub-divides again an already sub-divided domain. This is a particularly effective procedure
when the computational demands of a sub-domain grid exceed the memory capacity of a
processor.

It is apparent that the strategy of geometrical grid partitioning, dynamic load balancing and
further geometrical partitioning provides a means by which it is possible to generate arbitrarily
large meshes on computers with modest computational specifications. This is a very powerful
argument for the geometrical partitioning strategy.

2.2.3. Inter-domain communication. Once the grid has been generated, it is necessary to
ensure that the relevant communication information between sub-domains is available for any

simulation. Once the required number of sub-domains has been reached in the sub-division

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

178 N. P. WEATHERILL ET AL.

process, the sub-domains are assembled and farmed out among the available processors for
volume grid generation. During the assembly process the sub-domains are renumbered so that
all sub-domains begin at node number one, defined as local numbering, since all new points
generated on the inter-domain boundaries are assigned a global number, with the mapping
between local and global stored. It is this mapping that enables the communication information
to be found. This then enables an arbitrary transformation between local and global numbering
to be performed making it possible to construct the necessary communication links for any
solver.

2.2.4. Load redistribution. A well-balanced workload among the sub-domains is essential for
all parallel simulation algorithms. Since the domain decomposition is carried out on the initial
grid, it proves difficult to predict the exact number of elements in each sub-domain. However,
a workload redistribution algorithm can be introduced as a post-processing step.

The generalized load-balancing problem is an important area for research in its own right.
We have adopted the technique developed by Hu and Blake [10]. The technique minimizes the
Euclidean norm of the migrating load. The algorithm is simply based on solving the system
Lx=>b where L is the Laplacian matrix of the graph

(L) =1 deg(i) 1if i=j (1)
0 otherwise

bi:S[*W (2)

Here S; is the current load in domain i, W is the average load and E represents the com-
munication between adjacent sub-domains. A conjugate gradient method is used to solve this
system. The weight to be transferred between domains i and j is then given by x; — x;.

2.2.5. Smoothing internal boundaries. The communication table between sub-domains also
enables operations to be performed on the mesh. A post-processing step can be implemented
in the Delaunay mesh generator to smooth inter-domain boundary nodes using a Laplacian
smoother

p+l bW ;
ry :I"O-i-NZ(}’OfVI-) i=1,...N 3)
i=1

where denotes the nodal co-ordinates, N is the total number of neighbour points i, to the
node o, w is the relaxation parameter and p is the iteration level.

An example of the domain decomposition is shown in Figure 8. The figure shows the
iterative procedure of domain decomposition, and also the opportunities for parallelization
at the decomposition stage. The initial surface triangulation is split into two halves, and
the resulting inter-domain boundary is shown below it. This then leads to two separate sub-
domains, which can be either sent to the volume mesh generation stage, or further sub-divided
until the required number of sub-domains is reached. In this case, further sub-division has
taken place and the same process has been repeated. It is at this stage that parallelization can

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 179

=
ST

ISEHA T
A% 'Av‘vﬂhu‘

KSR TN
AT LN
R ATSEAAT
NN
N 5 ’%’g‘:'é‘v

Figure 8. Domain decomposition.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

180 N. P. WEATHERILL ET AL.

take place, whereby each sub-domain can be farmed out among the available processes for
sub-division and inter-domain meshing.

2.3. Solution procedure

The solver technology used for both fluids (Euler or Navier—Stokes equation) and electro-
magnetics (Maxwell’s equations) is finite element based with explicit time integration.

The spatial solution domain is discretised into a general assembly of elements. A piecewise
linear variation of the approximation solution space is assumed. A Galerkin approximate
variational formulation is used. The mesh is represented in terms of an edge-based data
structure.

Stabilization and discontinuity capturing is achieved by replacing, on each edge, the actual
(convective) flux function by an approximate numerical flux function. Explicit finite difference
procedures are employed to discretize the time dimension.

In the parallel implementation, the mesh is partitioned. Within each partition, nodes and
edges are locally numbered. Edges are not duplicated and, where two or more domains meet,
the domain with the lower partition number stores the interface edges. Interface nodes are
duplicated in sub-domains and, for each node, the domain with the higher partition number
performs the updating of the solution values. At the start of a time step, the interface nodes
obtain contributions along the interface edges local to each particular sub-domain. These par-
tially updated interface nodal contributions are then broadcast to the corresponding interface
nodes in the neighbouring sub-domains. While the data is being sent, each processor performs
a loop over the interior edges. This is then followed by receiving the interface node contri-
butions in order to update all interface nodal values. The sending of the updated values back
to the interface nodes completes a time step of the procedure [3]. Performing two loops over
the edges, the first over the interface edges and the second over the interior edges, allows
communication and computation to overlap if allowed by the parallel computer hardware.

Typical performance data for the parallel solvers, for Euler, Navier—Stokes and the Maxwell
equations are given in Figure 9.

2.4. Adaptation

Given a solution on an initial mesh, A-refinement can be employed to provide additional
resolution where indicated by an error estimator. Mesh refinement is applied in the differ-
ent sub-domains, with care taken to ensure consistency of the grid should refinement be
required along interface boundaries. Nodes added on the configuration geometry are taken
back to the original surface which requires details of the geometry to be sent to the different
processors.

2.5. Visualization

The basis of the parallel visualization toolkit is for all the searching and computationally
intensive work to be performed on the processors and only the data required to be rendered
sent to the workstation for visual display. The parallel visualization module, ViPar, imple-
ments the geometry data transfer method of distributing the visualization process. The parallel
architecture is composed of a Master Process running on the graphics workstation, and a

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 181

300 1
Processors Speed -up
250 1 M Euler Solver | 4 4
5 g0 {—Loptimum — 8 752
3 16 1636
& 150 —
32 28.28
100 B 64 71.08
50 || 128 96.28
256 185.7
0- —r
4 8 16 32 64 128 256 Number of Elements: 1.7 million
Number of Processors Number of edges 1.92 million
351
301 Navier-Stok: |
E Oz\:il;rumto . Processors Speed -up
251 4 4
o, i —
3 20 8 7.68
& 157] 16 154
10 — 32 30.9
51 N Number of Elements: 1.97 million
l-l Number of edges 2.32 million
0.‘ T T q
4 8 16 32
Number of Processors
300 - Processors Speed -up
- 4 4
250 1 W Maxwell
[Optimum | 8 8
g 2007 16 152
3 150 = 32 296
w
100 | 64 52.8
128 102.8
507 B 256 132.8
0 i —

Number of Elements: 1.90 million

4 8 16 32 64 128 256 o
Number of edges 2.25 million

Number of Processors

Figure 9. Performance data for the parallel solvers.

number of Slave Processes running on the parallel platform. The current implementation of
ViPar assumes that the architectures on which it is executed conform to:

1. The graphics workstation should support the Open-GL library for rendering. Today, this is
not seen as a major restriction since virtually all desktop platforms support Open-GL.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

182 N. P. WEATHERILL ET AL.

2. The parallel computer is assumed to be of a multiple instruction, multiple data (MIMD)
architecture. Again, this is not much of a restriction since most modern parallel computers
use the MIMD architecture.

3. The parallel computer is assumed to use distributed memory architecture. This, in fact, is
not a restriction since it can be emulated on almost any type of parallel computer including
shared memory parallel computers and even clusters of networked workstations.

A set of library routines has been developed to handle the communication. Fast search routines,
which operate between sub-domains, and hence are held on different processors, have been
developed that utilise octree data structures [11].

Given a geometry, the visualization, meshing, simulation, adaptation and post-processing
are all achieved in parallel without a requirement, at any stage in the cycle, to bring together,
within one domain, the simulation data. As such, it is our premise that no computational
bottlenecks are created. Given this development the new software and hardware technology
can be fully exercised.

3. ENGINEERING SIMULATIONS

3.1. Computational electromagnetics

As an example of a large-scale simulation, the propagation of a single wave through an
engine duct is considered. Maxwell’s equations, written in the time domain, are solved using
an explicit time integration procedure. The frequency of the simulation required is 10 GHz.
The wavelength, therefore, is

A=(Speed of light)/(Frequency)=3cm

The duct has dimensions (metres) of 6.2 x 0.45 x 0.45. If it is assumed that 10 grid nodes per
wavelength are required then, the duct, of electrical length 210 x 15 x 15, requires a mesh of
47.25 million nodes, or approximately 250 million elements.

To generate a uniform mesh with the required size, a background spacing was set at 3
units. The details of the mesh generated are given in Table I.

Figure 10 shows the number of elements generated in each of the 128 partitions. Although
there is some variation, after the application of the re-distribution algorithm, all partitions
contain almost the same number of elements.

Figure 11 shows the number of partitions generated by each processor. This data highlights
the implementation of dynamic load balancing. For example, processors 10 and 21 each
generated grids for two domains, whilst processor 7 generated grids in 7 domains.

Figure 12 again, indirectly, shows the effectiveness of dynamic load balancing. All the
processors are kept busy, independent of the number of partitions for which they generate
grids. As an example, although processor 7 generated grids for 7 domains, it computed for
almost the same length of time as processor 21 that generated just two domains.

To demonstrate the flexibility of the geometrical partitioning approach, this same mesh was
generated using 32, 16, 8 and 2 processors. Table II shows the times taken.

The time required to simulate one cycle of the wave, using 32 processors, was 8 h.
To complete the simulation on a machine with 1024 processors would take approximately
4.5 days.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 183

Table 1. Statistics of the unstructured mesh.

Geometry No. of surfaces No. of curves
94 188
Mesh No. of partitions No. of processors (R12,000 400 MHz)
128 32
Surface mesh No. of nodes No. of triangles
1834328 3668652
Time for generation
1.6h
Volume mesh No. of nodes No. of tetrahedra
44078 548 236356076
Size of volume mesh file Size of communication data file
5.1GB 0.23GB
Time for generation
18h
Communication Boundary faces
9068482

Work Load Balance
3.5E+06

3.0E+06

2.5E+06 = i M

2.0E+06 H H I 1 S N | | N I AL ||

1.5E+06 7 1IN M M A mirlimmlin

No. of Elements

1.0E+06 i i i F e

5.0E+05 7 1 M I I i

0.0E+QQ trrrrrrrrt T T Tt T T THT

1 2 3 3 4 4 5 6 6 7 7

5 1 7 3 9 5 1 7 3 9
Partition Number

1
O ———————
‘ ‘

N

Figure 10. Number of elements generated in each partition.

The mesh and solution data are 7.63 Gbytes in size. This data in 128 partitions across 32
processors can be visualized using the parallel visualization tool ViPar. To load and display
the surface data took 11 min 50s. To produce a cutting plane anywhere in the domain took
2 min 14 s. Figure 13 shows the mesh elements coloured by the partition, in which they
reside, and Figure 14 shows the wave propagation after one cycle.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

184 N. P. WEATHERILL ET AL.

Dynamic Load Balancing

72}

=

]
=

s
a
L

o

[}
Z

12 3 456 78 910111213141516 1718 1920212223 24 2526 27 2829 30 3132
Processor Number
Figure 11. Number of partitions generated per processor.
Time in Hours for Each Processor

Z

=

]

jan

12 383 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Processor Number

Figure 12. Number of hours computing per processor.

Table II. Time taken to generate the mesh on a different number of processors.

Number of processors Time (h)
32 18
16 24

8 40

2 256

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 185

Figure 13. Aerospace duct divided into 128 partitions.

Figure 15. Surface contours of pressure are shown on the aircraft after mesh refinement.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

186 N. P. WEATHERILL ET AL.

Table III. Statistics of the unstructured mesh.

Geometry No. of surfaces No. of curves
68 161
Mesh No. of partitions No. of processors (R12,000 400 MHz)
8 8
Surface mesh No. of nodes No. of triangles
2871778 575552
Volume mesh No. of nodes No. of tetrahedra
5424167 33885651
Size of volume mesh file Size of communication data file
694 MB 1.2MB
Adapted mesh No. of nodes No. of tetrahedra
19944 869 119681529
Boundary faces
1448014
Size of volume mesh file
1.41GB

3.2. Computational fluid dynamics

As an illustration of a large-scale computational fluid dynamics computation, the inviscid
flow around a complete aircraft is considered with the application of mesh refinement. An
unstructured mesh of tetrahedra was generated in parallel. A solution was obtained and then
the mesh refined (Figure 15). Table III provides some data on the meshes generated.

This provides an illustration of the size of meshes that can be generated for an aircraft
geometry. Work is in-hand to use these techniques to perform a systematic study of adaptive
refinement, where the initial mesh is the order of 5 million elements and subsequent multiple
levels of refinement increase the mesh to the order of 100 million elements.

4. SUMMARY

Unstructured grid technology for computational fluid dynamics and computational electromag-
netics has been enhanced to maximize the efficient use of parallel computer hardware. All
steps of the computational cycle have been parallelized including data visualization, mesh gen-
eration, solution algorithms and mesh adaptation. These developments now enable large-scale
simulations to be performed on ‘departmental’ computers.

ACKNOWLEDGEMENTS

The authors wish to thank the European Union for funding the JULIUS project (Esprit 25050) under
which some of this work was undertaken. B. Larwood would also like to thank EPSRC for financial
support. The aerospace duct test case was kindly provided by BAE Systems, Sowerby Research Centre.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

PARALLELIZING UNSTRUCTURED GRID TECHNIQUES 187

REFERENCES

1. Morgan K, Brookes PJ, Hassan O, Weatherill NP. Parallel processing for the simulation of problems involving
scattering of electromagnetic waves. Computer Methods in Applied Mechanics and Engineering 1998; 152:
157-174.

2. Said R, Weatherill NP, Morgan K, Verhoeven NA. Distributed parallel Delaunay mesh generation. Computer
Methods in Applied Mechanics and Engineering 1999; 177:109-125.

3. Morgan K, Weatherill NP, Hassan O, Brookes PJ, Said R, Jones JW. A parallel framework for multi-disciplinary
aerospace engineering simulation using unstructured meshes. International Journal for Numerical Methods in
Fluids 1999; 31:159-173.

4. Manzari MT, Hassan O, Morgan K, Weatherill NP. Turbulent flow computations on 3D unstructured grids.
Finite Elements in Analysis and Design 1998; 30:353-363.

5. Weatherill NP, Turner-Smith EA, Marchant MJ, Hassan O, Morgan K. An integrated software environment for
multi-disciplinary computational engineering. Engineering Computations 1999; 16(8):913-933.

6. Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation
and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37:
2005-2039.

7. Morgan K, Peraire J, Peiro J, Hassan O. The computation of three-dimensional flows using unstructured grids.
Computational Methods in Applied Mechanics and Engineering 1991; 87:335-352.

8. Gropp W, Lusk E, Skjellum A. Using MPI. Portable Parallel Programming with the Message Passing
Interface. MIT Press: Cambridge, MA, 1994.

9. Geist A, Beguelin A, Dongara J, Jiang W, Manchek R, Sunderam V. PVM3 User’s Guide and Reference
Manual. Oak Ridge National Laboratory: Oak Ridge, TN, 1994.

10. Hu YF, Blake RJ. An optimal dynamic load balancing algorithm. PrePrint DL-P-95-011, Daresbury Laboratory,
1995.

11. Jones JW, Weatherill NP. The visualization of large unstructured grid data sets within a parallel problem solving
environment. Applied Mathematical Modelling, submitted for publication.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:171-187

